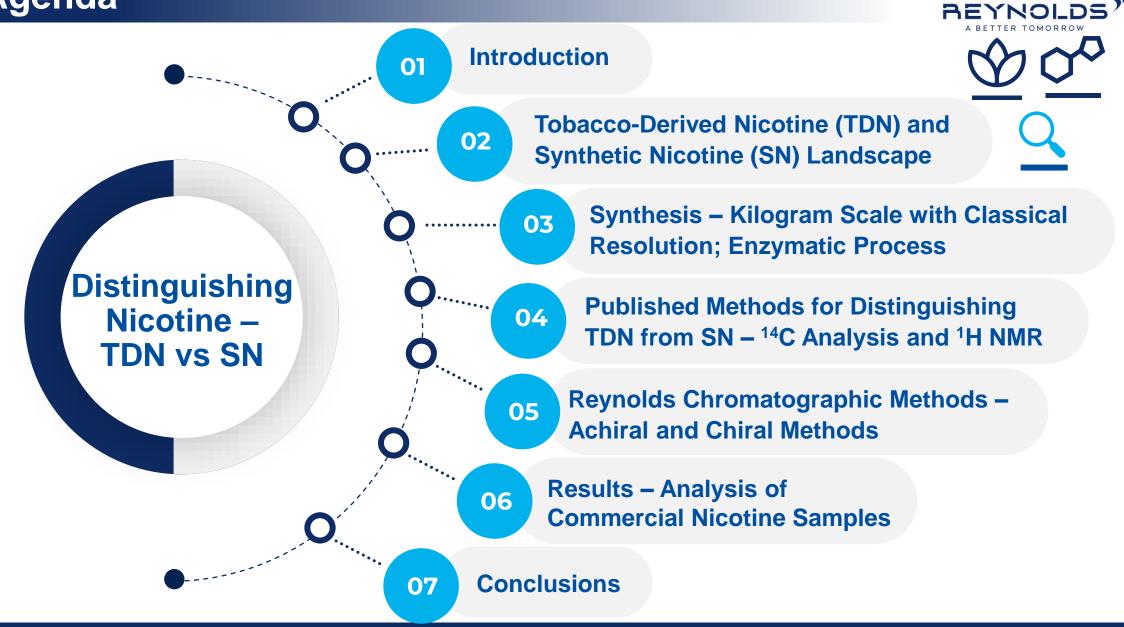
Distinguishing Tobacco-Derived Nicotine from Synthetic Nicotine in Commercial Nicotine Samples

Gary M. Dull,* Serban C. Moldoveanu, and Karen B. Kilby

20 October 2022

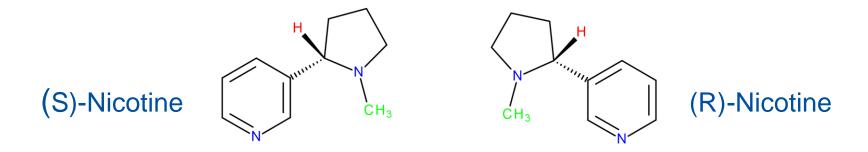

Reynolds American Inc. and its affiliates are independent subsidiaries of the British American Tobacco Group

Disclaimer

- > This material was prepared to facilitate discussion with policymakers and government officials regarding government policy and tobacco harm reduction. Without limitation, the topics, proposals, concepts and other matters discussed or described herein are not final, are subject to change and/or cancellation and may be for illustrative or theoretical purposes only. No definitive plans or commitments should be inferred from these materials, and any proposed plans or commitments are subject in all respects to applicable internal reviews and governance requirements. Reynolds does not make health claims regarding its brands, which are not cessation products. Nothing contained here should be misconstrued to the contrary. To the extent that third-party sources are referenced, Reynolds is not responsible for the content of referenced sources and the views expressed may not represent the views of Reynolds. No tobacco product is safe, all tobacco products containing nicotine are addictive. Youth should never use tobacco. Smokers who are concerned about their health should quit.
- Reynolds American Inc. and its affiliates are independent subsidiaries of the British American Tobacco Group. 2022 RAI Services Company

Agenda

Introduction


- A Premarket Tobacco Product Application (PMTA) is required for tobacco products containing Snthetic Nicotine (SN) (March 15, 2022).
- While Tobacco-Derived Nicotine (TDN) and Synthetic Nicotine (SN) are both regulated by the FDA, distinguishing between these two forms may be critical for:
 - Tobacco authentication
 - □ Assessing manufacturing methodology
 - Assessing nicotine chirality relative to any pharmacological concerns

TDN and SN Landscape

	TDN	SN		
Manufacturing Locations	US, UK, Europe, Global	Global		
Manufacturing Process	Extraction of tobacco plant material,	Chemical processing from chemical		
	chemical processing, and purification	starting materials, enzymatic step, and		
	by high vacuum distillation	purification by high vacuum distillation		
Quality	cGMP, meets USP/EP Monograph	cGMP, meets USP/EP Monograph		
	testing standards; "Pharmaceutical	testing standards; "Pharmaceutical		
	Grade"	Grade"		
Chiral Purity	>99% (S)-nicotine; ~0.2 – 0.6%	50:50 (R)/(S) ratio to >99% (S)-nicotine		
	(R)-nicotine	and >0.1% (R)-nicotine		

Nicotine – US Pharmacopeia (USP Monograph) for Nicotine Testing ("Pharmaceutical Grade")

Identification

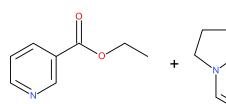
- **DFT-IR**
- **HPLC-UV** retention time
- Assay (Potentiometric Titration): 99.0-101.0% (anhydrous basis)

>Heavy Metals: Not More Than 20 ppm

HPLC Method for Organic Impurities: Anatabine, Nicotyrine, Cotinine, Myosmine, Nicotine N-oxide, Nornicotine, Anabasine: Not More Than 0.3% Each; Any Unspecified Impurity, Not More Than 0.1%; Total Impurities, Not More Than 0.8%

Optical rotation: -130° to -143° (20 mg/mL in alcohol)--(S)-Nicotine

≻Water: Not More Than 0.5%


Kilogram-Scale Synthesis – Racemic Synthesis and Classical Resolution^{1,2}

D-DBTA

EtOH

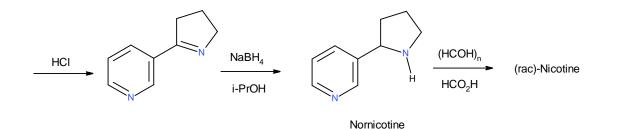
ĊH₃


(R)-Nicotine

Myosmine

ĊHa

(S)-Nicotine



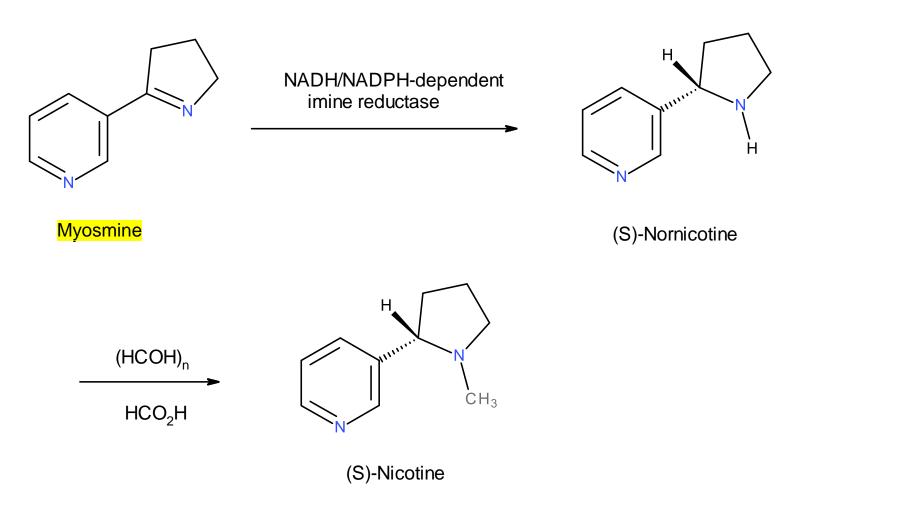
Ethyl nicotinate

L-DBTA

EtOH

N-Vinyl-2-pyrrolidone

СНа


(rac)-Nicotine

Synthetic methodology has improved such that synthetic (S)-nicotine with a very low level of (R)-nicotine (0.1-0.2%) is now commercially available.

 Weber B, Pan B, Siegfried AG. Enantiomeric separation of racemic nicotine by addition of an o,o'-disubstituted tartaric acid enantiomer. WO 2019/121649 A1, June 27, 2019. Available: <u>https://patents.google.com/patent/WO2019121649A1/en</u>
 Weber BT, Lothschütz C, Pan B. Siegfried AG Contraf-Nicotex-Tobacco GmbH assignee. Preparation of racemic nicotine by reaction of ethyl nicotinate with Nvinylpyrrolidone in the presence of an alcoholate base and subsequent process steps. US2020/0331884 A1, Oct. 22, 2020. Available: <u>https://patents.google.com/patent/US20200331884A1</u>

Enzymatic Process – Stereoselective Reduction of Myosmine³

 McCague R, Narasimhan AS. Zanoprima Lifesciences Limited (London, GB), assignee. Process of making (S)nicotine. USA patent 10,913,962 B2, Feb. 9, 2021. Available: <u>https://patents.google.com/patent/US10913962B2/en</u>

Published Methods for Distinguishing TDN from SN --¹⁴C Analysis and ¹H NMR

≻¹⁴C Analysis

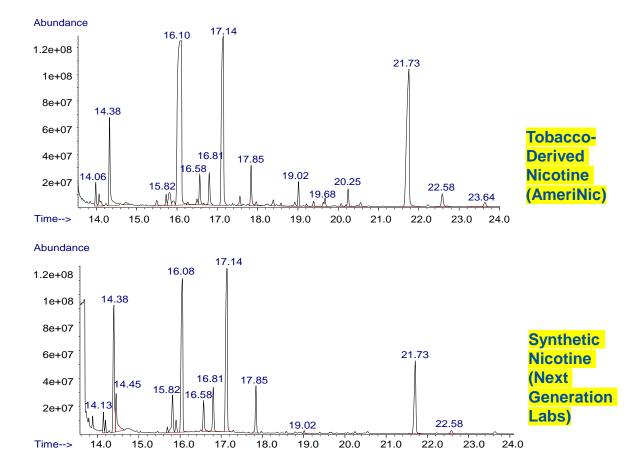
□Radiocarbon ¹⁴C is higher in TDN than SN⁴

□Sample size > 50 mg; specialized ¹⁴C instrumentation

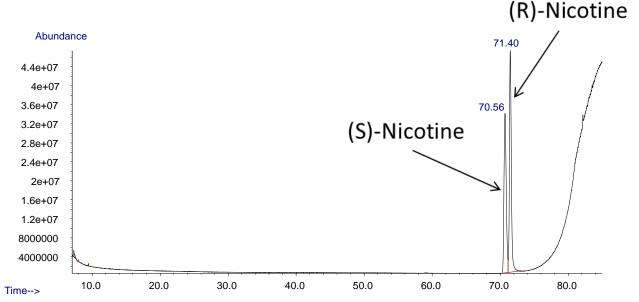
≻¹H NMR

□Site-specific peak intensity ratio from 1D ²H/¹H NMR spectroscopy method ⁵
 □Can only detect TDN adulteration with SN as low as 20% SN

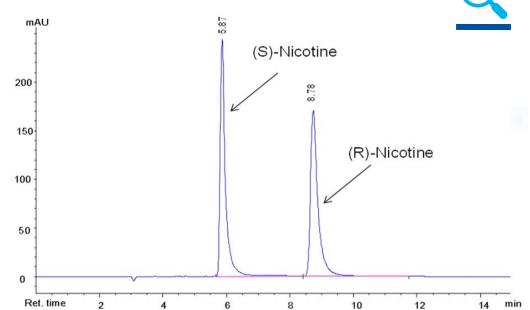
- 4. Cheetham AG, et al. Analysis and differentiation of tobacco-derived and synthetic nicotine samples: Addressing an urgent regulatory issue. *PLOS ONE.* 2022;17(4):1-17 (Enthalpy Analytical, LLC).
- Liu B, et al. Site-specific peak intensity ratio (SPIR) from 1D ²H/¹H NMR spectra for rapid distinction between natural and synthetic nicotine and detection of possible adulteration. *Anal. Bioanal. Chem.* 2019;411:6427-6434 (Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine).


Reynolds Chromatographic Methods – GC/MS and SPME GC/MS

➢ Method 1. GC/MS and SPME/GC/MS


- > GC/MS Method:
 - ❑ Agilent 6890 with 5973 MSD; DB-Waxeter column, 30 m x 0.25 mm i.d., with 0.25 µm film
 - □ Monitoring at 33-300 amu
 - □ 50 mg in 1 mL methanol
- > SPME/GC/MS Method:
 - Agilent 7890A/5975C; Gerstel MPS Multipurpose Analyzer; SPME capability
 - SPME fiber: 50/30 mm DVB/CAR/PDMS Stableflex 23 Ga (Gray)
 - □ DB-WaxEtr column, 30 m x 0.25 mm i.d., with 0.25 µm film
 - **20** mg in a SPME vial
 - □ NIST mass spectral library; quality match of ≥80%
- ≻ Method 2. GC/MS
 - > GC/MS Method:
 - Agilent 6890/5973 system; DB-Waxeter column, 30 m x 0.25 mm i.d., with 0.25 µm film
 - □ Monitoring at 33-550 amu
 - □ 10 mg in 1 mL tert-butyl methyl ether
 - □ NIST, Wiley mass spectral libraries

SPME GC/MS Chromatogram --Time Window 14 – 24 Min



Reynolds Chiral GC/MS and Chiral HPLC/UV Chromatograms

Chiral GC-MS chromatogram of a solution of 250 mg/mL nicotine in methanol (Synthetic). (S)-Nicotine retention time 70.56 min, and (R)-Nicotine retention time 71.40 min.

Chiral HPLC-UV chromatogram of a solution of (R)/(S)-nicotine standard (500 µg/mL in methanol). (S)-Nicotine retention time 5.87 min, and (R)-Nicotine retention time 8.78 min.

The chiral GC/MS method that was initially developed had a slightly unresolved baseline separation of (S)- and (R)-nicotine and a relatively long run time (>73 min). The chiral HPLC/UV method improved upon the GC/MS method by providing an excellent enantiomeric separation and a shorter run time (<10 min).

Table 1. Tobacco-Derived Nicotine (TDN) Results

			Amelatical		Distinguishing	%(R)-Nicotine by Chiral	Nicotine
Entry	Supplier	Nicotine Source	Analytical Method	Characteristic Impurity Results	Impurity Results for TDN	GC/MS ^a or HPLC-UV ^b	Source Conclusion
				Myosmine, β-nicotyrine, cotinine, 2,3'-			
1	AmeriNic	TDN	GC/MS	bipyridine	2,3'-Bipyridine	Not analyzed	TDN
				Cotinine, nornicotine, myosmine, β-	Lack of 1-methyl-2-		
2	AmeriNic	TDN	SPME/GC/MS	nicotyrine	pyrrolidinone	Not analyzed	TDN
				3-Vinylpyridine,			
				pyridinecarboxaldehyde, anatabine,			
		TDN		myosmine, β-nicotyrine, cotinine, 2,3'-			
3	AmeriNic	(Philippines)	GC/MS	bipyridine	2,3'-Bipyridine	0.8-0.9 ^a	TDN
				3-Vinylpyridine,			
				pyridinecarboxaldehyde, anatabine,			
				myosmine, β -nicotyrine, cotinine, 2,3'-			
4	AmeriNic	TDN (India)	GC/MS	bipyridine	2,3'-Bipyridine	0.8-0.9 ^a	TDN
				3-Vinylpyridine,			
				pyridinecarboxaldehyde, anatabine,			
	Siegfried			myosmine, β -nicotyrine, cotinine, 2,3'-			
5	ĂG	TDN (India)	GC/MS	bipyridine	2,3'-Bipyridine	0.8-0.9 ^a	TDN
				Low levels of oxidation products-			
-	Siegfried		0.0 / 1.0	myosmine, β -nicotyrine, cotinine, and		e eh	
6	AG	TDN (India)	GC/MS	low levels of anatabine	No distinguishing	0.6 ^b	TDN

TDN = Tobacco-Derived Nicotine; SN = Synthetic Nicotine; NGL = Next Generation Labs TFN[®]; eLT (TTI) = e-LiquiTech (Tobacco Technology, Inc.)

Table 2. Synthetic Nicotine (SN) Results

						%(R)- Nicotine	
					Distinguishing	by Chiral	Nicotine
		Nicotine	Analytical		Impurity Results for	GC/MS ^a or	Source
Entry	Supplier	Source	Method	Characteristic Impurity Results	SN	HPLC-UV [®]	Conclusion
				Myosmine, β -nicotyrine, cotinine, 1,3-	1,3-Dichloro-2-propanol,		
1	NGL	SN	GC/MS	dichloro-2-propanol, ethyl nicotinate	ethyl nicotinate	Not analyzed	SN
				Cotinine, nornicotine, myosmine, β-			
				nicotyrine, 1-methyl-2-pyrrolidinone,	1-Methyl-2-pyrrolidinone,		
2	NGL	SN	SPME/GC/MS	methylene chloride	methylene chloride	Not analyzed	SN
				3-Vinylpyridine, pyridinecarboxaldehyde,			
				anatabine, myosmine, β-nicotyrine,	2-pyrrolidinone, N-ethyl		
				cotinine, ethyl nicotinate, 1-methyl-2-	nornicotine, lower levels of		
3	NGL	SN	GC/MS	pyrrolidinone, N-ethyl nornicotine	myosmine, β-nicotyrine	50.0 ^b	SN
	Siegfried			β -nicotyrine (higher level than in		L.	
4	AG	SN	GC/MS	tobacco-derived nicotine)	No distinguishing	0.2 ^b	SN
				Low levels of oxidation products			
				myosmine, β -nicotyrine, cotinine, and			
5	eLT (TTI)	SN	GC/MS	low levels of anatabine	No distinguishing	0.2 ^b	SN
				Low levels of oxidation products			
	Zanoprima			myosmine, β -nicotyrine, cotinine, and			
6	Lifesciences	SN	GC/MS	low levels of anatabine	No distinguishing	0.1 ^b	SN

TDN = Tobacco-Derived Nicotine; SN = Synthetic Nicotine; NGL = Next Generation Labs TFN®; eLT (TTI) = e-LiquiTech (Tobacco Technology, Inc.)

Analytical Findings

➤ Table 1 – TDN Results

- □ Two suppliers of TDN included AmeriNic and Siegfried
- The nicotine was manufactured from tobacco material from the Philippines and India
- GC analysis provided characteristic, distinguishing TDN impurities
- Distinguishing impurities included 2,3'-bipyridine and levels of (R)-nicotine at 0.6-0.9%, typical of (R)-nicotine found in TDN

➤ Table 2 – SN Results

- Four suppliers of SN included Next Generation Labs, Siegfried, e-LiquiTech, and Zanoprima Lifesciences
- □ GC analysis provided characteristic distinguishing SN impurities, including starting materials, ethyl nicotinate; synthetic impurities,1-methyl-2-pyrrolidinone, 1,3-dichloro-2-propanol; other impurities, N-ethyl nornicotine; and the residual solvent, methylene chloride
- Chiral chromatography indicated a 50/50 mixture of (S)/(R)-nicotine in one sample (Entry 3) and was confirmation of synthetic nicotine
- □ Low levels of (R)-nicotine at 0.1–0.2% were an indication that the nicotine was likely synthetic

Conclusions

- Two achiral chromatography methods and two chiral chromatography methods were used to distinguish TDN from SN.
- TDN was found to contain the characteristic tobacco compound, 2,3'-bipyridine, while in some instances, SN, was found to contain synthetic starting materials, synthetic impurities, or residual solvents.
- Chiral chromatography results provided supporting evidence that nicotine samples containing low levels of (R)-nicotine (0.1-0.2%), as compared to TDN which typically contains 0.8-0.9% (R)-nicotine, were likely synthetic.
- The chiral methods provide an approach for determining (S)/(R) nicotine ratios that may be of importance related to any pharmacological concerns and future research.
- The combination of these analytical methods provides valuable information for distinguishing TDN from SN in commercial nicotine samples.

Acknowledgments

> The authors wish to acknowledge the contributions of Ching-En Chou to this paper.

> Thank you for your attention!

Contact Information: dullg2@rjrt.com